3.9.6 \(\int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx\) [806]

Optimal. Leaf size=68 \[ \frac {2 \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

2*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4*a*b*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*b^2*sin(d*x+c)/d/cos(d*x
+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4349, 3873, 3856, 2720, 4131, 2719} \begin {gather*} \frac {2 \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^2,x]

[Out]

(2*(a^2 - b^2)*EllipticE[(c + d*x)/2, 2])/d + (4*a*b*EllipticF[(c + d*x)/2, 2])/d + (2*b^2*Sin[c + d*x])/(d*Sq
rt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+b \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx\\ &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a^2+b^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx+\left (2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {2 b^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+(2 a b) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\left (\left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\left (a^2-b^2\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 62, normalized size = 0.91 \begin {gather*} \frac {2 \left (\left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+b \left (2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\frac {b \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^2,x]

[Out]

(2*((a^2 - b^2)*EllipticE[(c + d*x)/2, 2] + b*(2*a*EllipticF[(c + d*x)/2, 2] + (b*Sin[c + d*x])/Sqrt[Cos[c + d
*x]])))/d

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 202, normalized size = 2.97

method result size
default \(\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}-4 b a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(202\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

2*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^2-2*b*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2))*b^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.50, size = 178, normalized size = 2.62 \begin {gather*} \frac {-2 i \, \sqrt {2} a b \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 i \, \sqrt {2} a b \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, b^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (i \, a^{2} - i \, b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (-i \, a^{2} + i \, b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

(-2*I*sqrt(2)*a*b*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 2*I*sqrt(2)*a*b*cos
(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*b^2*sqrt(cos(d*x + c))*sin(d*x + c) +
sqrt(2)*(I*a^2 - I*b^2)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*
x + c))) + sqrt(2)*(-I*a^2 + I*b^2)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c))))/(d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \sec {\left (c + d x \right )}\right )^{2} \sqrt {\cos {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a + b*sec(c + d*x))**2*sqrt(cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 1.40, size = 81, normalized size = 1.19 \begin {gather*} \frac {2\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^2,x)

[Out]

(2*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*b^2*sin(c + d*x)*hypergeom(
[-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________